skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Calore, Francesca"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We report on the results of an image-based search for pulsar candidates toward the Galactic bulge. We used mosaic images from the MeerKAT radio telescope that were taken as part of a 173 deg2survey of the bulge and Galactic center of our Galaxy atLband (856–1712 MHz) in all four StokesI,Q,U, andV. The image rms noise levels of 12–17μJy ba−1represent a significant increase in sensitivity over past image-based pulsar searches. Our primary search criterion was circular polarization, but we used other criteria, including linear polarization, in-band spectral index, compactness, variability, and multiwavelength counterparts to select pulsar candidates. We first demonstrate the efficacy of this technique by searching for polarized emission from known pulsars and comparing our results with measurements from the literature. Our search resulted in a sample of 75 polarized sources. Bright stars or young stellar objects were associated with 28 of these sources, including a small sample of highly polarized dwarf stars with pulsar-like steep spectra. Comparing the properties of this sample with the known pulsars, we identified 30 compelling candidates for pulsation follow-up, including two sources with both strong circular and linear polarization. The remaining 17 sources are either pulsars or stars, but we cannot rule out an extragalactic origin or image artifacts among the brighter, flat-spectrum objects. 
    more » « less
  2. ABSTRACT The gamma-ray Fermi-LAT Galactic Centre excess (GCE) has puzzled scientists for over 15 yr. Despite ongoing debates about its properties, and especially its spatial distribution, its nature remains elusive. We scrutinize how the estimated spatial morphology of this excess depends on models for the Galactic diffuse emission, focusing particularly on the extent to which the Galactic plane and point sources are masked. Our main aim is to compare a spherically symmetric morphology – potentially arising from the annihilation of dark matter (DM) particles – with a boxy morphology – expected if faint unresolved sources in the Galactic bulge dominate the excess emission. Recent claims favouring a DM-motivated template for the GCE are shown to rely on a specific Galactic bulge template, which performs worse than other templates for the Galactic bulge. We find that a non-parametric model of the Galactic bulge derived from the VISTA Variables in the Via Lactea survey results in a significantly better fit for the GCE than DM-motivated templates. This result is independent of whether a galprop-based model or a more non-parametric ring-based model is used to describe the diffuse Galactic emission. This conclusion remains true even when additional freedom is added in the background models, allowing for non-parametric modulation of the model components and substantially improving the fit quality. When adopted, optimized background models provide robust results in terms of preference for a boxy bulge morphology for the GCE, regardless of the mask applied to the Galactic plane. 
    more » « less
  3. ABSTRACT Reticulum II (Ret II) is a satellite galaxy of the Milky Way (MW) and presents a prime target to investigate the nature of dark matter (DM) because of its high mass-to-light ratio. We evaluate a dedicated INTEGRAL observation campaign data set to obtain γ-ray fluxes from Ret II and compare those with expectations from DM. Ret II is not detected in the γ-ray band 25–8000 keV, and we derive a flux limit of $${\lesssim}10^{-8}\, \mathrm{erg\, cm^{-2}\, s^{-1}}$$. The previously reported 511 keV line is not seen, and we find a flux limit of $${\lesssim}1.7 \times 10^{-4}\, \mathrm{ph\, cm^{-2}\, s^{-1}}$$. We construct spectral models for primordial black hole (PBH) evaporation and annihilation/decay of particle DM, and subsequent annihilation of e+s produced in these processes. We exclude that the totality of DM in Ret II is made of a monochromatic distribution of PBHs of masses $${\lesssim}8 \times 10^{15}\, \mathrm{g}$$. Our limits on the velocity-averaged DM annihilation cross section into e+e− are $$\langle \sigma v \rangle \lesssim 5 \times 10^{-28} \left(m_{\rm DM} / \mathrm{MeV} \right)^{2.5}\, \mathrm{cm^3\, s^{-1}}$$. We conclude that analysing isolated targets in the MeV γ-ray band can set strong bounds on DM properties without multi-year data sets of the entire MW, and encourage follow-up observations of Ret II and other dwarf galaxies. 
    more » « less